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Wall-pressure fluctuations associated with subsonic 
turbulent boundary layer flow 
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Department of Mechanical Engineering, University of Adelaide, South Australia 

(Received 17 March 1964 and in revised form 18 July 1966) 

Experimental results are given for various statistical properties of the fluctuating 
wall-pressure field associated with a subsonic turbulent equilibrium boundary 
layer, developed on a smooth wind tunnel wall after natural transition from 
laminar to turbulent flow. 

The statistical quantities of the wall-pressure field investigated were root- 
mean-square pressure, frequency power spectrum and space-time correlations. 
Space-time correlation measurements were made in both broad and narrow 
frequency bands. The experiments were made at  flow Mach numbers of 0-3 
and 0.5 and covered a Reynolds number range of about 5 to 1. 

The main conclusion to which the measurements lead is that the wall-pressure 
field has a structure produced by contributions from pressure sources in the 
boundary layer with a wide range of convection velocities, and comprises two 
families of convected wave-number components. One family is of high wave- 
number components and is associated with turbulent motion in the constant 
stress layer; the component,s are longitudinally coherent for times proportional 
to the times taken for them to be convected distances equal to their wavelengths 
and laterally coherent over distances proportional to their wavelengths. The 
other family comprises components of wavelength greater than about twice the 
boundary-layer thickness, which lose coherence as a group more or less inde- 
pendently of wavelength and are associated with large-scale eddy motion in 
the boundary layer, outside the constant stress layer. The evolution of the pres- 
sure field is discussed in terms of these two wave-number families. 

~ ~ _ _  

1. Introduction 
From the experimental point of view, our knowledge of pressure fluctuations 

in turbulent flows is not nearly as extensive as that of velocity fluctuations. 
This stems from the lack of a generally applicable pressure-measuring instru- 
ment which can be used in the same wide variety of circumstances as the hot- 
wire anemometer. Measurements of pressure fluctuations within a turbulent 
flow have been made in a few isolated cases-for example by Kobashi (1957) 
in wake flow and (indirectly) by Uberoi (1954) in isotropic turbulence-but it is 
only in the particular case of wall-pressure fluctuations produced by turbulent 
shear flow over a boundary surface, where a pressure transducer can be mounted 
in the surface without disturbing the flow in any way, that experimental data are 
becoming at  all extensive. Interest in wall-pressure fluctuations has also been 
intensified because of the engineering problems they give rise to. 
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The earliest attempt at a theoretical treatment of pressure fluctuations in a 
turbulent shear flow was made by Kraichnan (1956a, b,  1957). He concluded that 
pressure fluctuations at  a point are produced by quite local velocity fluctuations, 
and that the dominant contribution to the mean-square pressure is produced by 
the interaction between turbulence and mean shear except perhaps a t  low wave- 
numbers. He estimated the ratio of root-mean-square pressure p' to wall shear 
stress T~ to be about 6. Using a similar type of analysis Lilley & Hodgson (1960) 
also found a dominance of turbulence/mean shear interaction and derived a 
value of about 3. The dominance of turbulencelmean shear interaction has, 
however, recently been questioned by Corcos (1962, 19638). 

Experimental measurements of wall-pressure fluctuations in shear flows 
influenced by solid boundaries have been reported by a number of investigators. 
Wall-pressure fluctuations due to turbulent boundary-layer flow have been 
investigated by Harrison (1958), Willmarth (1958, 1959), Bull (1960), Bull & 
Willis (1961), Willmarth & Wooldridge (1962), Hodgson (1962) and Serafini 
(1963), all working with air at subsonic speeds, by Kistler & Chen (1962), working 
with air at  supersonic speeds, and by Skudrzyk & Haddle (1960) and Bull & 
Willis (1961) in the case of water flows. Pressure fluctuations at  the wall of a 
pipe with fully developed turbulent flow have been measured by Corcos (1962) 
and by Bakewell et al. (1962) and beneath a wall jet by Lilley & Hodgson (1960). 

Although there were fairly wide discrepancies among various investigators, 
early work on subsonic flows established the order of magnitude of the root- 
mean-square pressure fluctuation, the general form of the frequency spectrum, 
and the convected nature of the wall-pressure field. Perhaps the main criticism 
which can be made of this early work is that in almost all cases the size of the 
pressure transducer was too large in relation to the thickness of the boundary 
layer in which i t  was used. This resulted in attenuation of the pressure signal at 
high frequencies, due to the cancellation of small-scale components of the pres- 
sure field over the face of the transducer, and precluded any detailed examination 
of the small-scale components. 

In the present experiments the first aim was to achieve a small value of the 
ratio of transducer diameter to boundary-layer thickness by using miniature 
pressure-sensing elements, in order to obtain mom precise pressure measure- 
ments and to make possible the detection of any existing differences in the 
behaviour of large- and small-scale components. The second aim was to study 
the detailed structure of the pressure field by investigating the behaviour of the 
various frequency or wave-number components of which it is composed by cor- 
relation measurements on the pressure signals after they had been filtered into 
narrow frequency bands. 

2. Pressure field scales 
The choice of the scales (see also Corcos 1963 b)  to be used in the presentation 

of experimental data for a quantity such as the fluctuating wall pressure, which 
can receive contributions from pressure sources distributed throughout the 
boundary layer, is complicated by the fact that the representation of the dis- 
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tribution of mean velocity and turbulence intensities, at any streamwise station 
in a turbulent boundary layer, cannot be made in terms of the same velocity and 
length scales over the whole layer thickness, but requires a distinction between 
an inner (constant stress) region and an outer wake-like region. The outer 
region and the fully turbulent part of the constant stress layer exhibit self- 
preservation of mean velocity profile (in velocity defect form) and distribution 
of turbulence intensities. The scales of velocity and length are the friction 
velocity U, = ( ~ ~ / p ~ ) *  (where po is free-stream density) and the boundary-layer 
thickness S respectively. For the remainder of the constant-stress layer closer to 
the wall the appropriate scales are U, and v/U, (where Y is the kinematic viscosity). 

If the wall-pressure field receives significant contributions from pressure 
sources in both regions of the boundaiy layer, the various functions associated 
with it will obviously show Reynolds number dependence when expressed in 
terms of either the outer or the inner layer scales. Which scales minimize this 
dependence must be determined by experiment. 

3. Experimental details 
3.1. The wind tunnel 

The experimental data which are presented were obtained from measurements 
made on the turbulent boundary layer developed, after natural transition from 
laminar to turbulent flow, on one of the ground and polished gin. walls of the 
subsonic test section of the 9 in. by 6 in. boundary-layer tunnel in the University 
of Southampton. 

Settling 

FIGURE 1. General arrangement of 9 in. x G i n .  boundary-layer wind tunnel. 

This wind tunnel (figure 1) is of the induced-flow non-return type driven by 
the injection of compressed air downstream of the working sections. It has two 
working sections, a subsonic section loft. long followed by a supersonic section 
5 ft. long, both of which have rectangular cross-sections nominally 9 in. by 6 in. 
To keep vibration to a minimum, the working sections are of massive steel 
construction, and are mechanically isolated from the injector and from each 
other, being connected by flexible couplings. They are carried on flexible mount- 
ings which isolate them from vibration transmitted through the laboratory 
floor. The subsonic section is slightly divergent to compensate for boundary- 
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layer growth so that there is no pressure gradient along it. Instrumentation is 
mounted in 6 in. diameter plugs which fit ports in one of the 9 in. walls. 

To keep the extraneous sound field in the test section to a minimum, the 
injector and diffuser are heavily sound-proofed, and in the present experiments 
the tunnel was always run in a choked condition so that injector noise and dif- 
fuser noise were not propagated internally into the test section. The diffuser 
outlet is outside the laboratory building. 

3.2. Instrumentation 

All measurements of fluctuating pressure were made with piezoelectric trans- 
ducers mounted rigidly in the wind-tunnel wall. The face of the transducer and 
the wall formed a continuous surface. The pressure-sensitive elements were lead 
zirconate-titanate disks 0.029 in. diameter and 0.018in. thick. The ratio of 
diameter of pressure-sensitive element d to boundary-layer displacement thick- 
ness &* lay in the range 0.15 < d/&* < 0.51 and was therefore considerably 
smaller than that achieved in most previous investigations. 

An overall calibration and a check on the linearity and uniformity of frequency 
response were obtained from the response of the transducer to the passage 
across its face of shock waves of various strengths. A detailed low-frequency 
response for frequencies up to about 1000 c/s was obtained by calibration against 
a standard microphone, the two instruments being mounted in a small cavity, 
together with a moving-coil calibration signal generator (with this procedure 
the transducer could be calibrated in its experimental mounting). The calibration 
was normally checked before and after each tunnel run when root-mean-square 
pressure and spectral density measurements were being made. 

The electrical output of the transducer was fed to a pre-amplifier with high 
input impedance, of the order of 5 x 1080hm, and then further amplified for 
direct spectral analysis (Bruel and Kjaer +-octave Audio Frequency Spectro- 
meter Type 2111) or for recording on magnetic tape (Ampex Model FR-100 
tape recorder). All correlation values were obtained from recorded signals 
processed by the correlation equipment described by Allcock, Tanner & McLach- 
lan (1962). For narrow-band correlations the signals in each replay channel were 
passed through +-octave filters before being fed to the correlator. The two chan- 
nels were phase-matched in all cases. 

Signals for correlation were recorded a t  a tape speed of l5in./sec, but because 
of the limited bandwidth of the correlator (0 < f < 12,000 CIS),  it was necessary 
to replay at  reduced speed, 3.75 in./sec, in order to accommodate the bandwidth 
of the pressure fluctuation signals. 

Velocity fluctuations were measured by means of a constant temperature 
hot-wire anemometer (Disa Type 55A01). The hot wires were of tungsten 
0.0002 in. in diameter, electrically welded to their supporting needles. After 
welding, the wire and needle tips, with the exception of a 0.06in. length a t  the 
centre of the wire which formed the working portion, were copper plated. The 
hot-wire probes were carried on supports of aerofoil section which could be 
traversed normal to the tunnel wall. The supports were designed to avoid signifi- 
cant increases in the sound pressure level in the tunnel working section. 
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3.3. &ope of the measurements 

Measurements of mean-square pressure were made at nine streamwise stations 
at a free-stream Mach number M, of 0.3 and at  ten stations at  M, = 0.5) those 
of frequency power spectral density and broad-band space-time correlation 
coefficient at two stations at  M, = 0.3 and three at  M, = 0.5) and those of narrow- 
band correlation coefficient at two stations at  M, = 0.3 and one at M, = 0-5. 
Broad- and narrow-band correlation measurements were made for separation 
distances along lines making angles of p = 0", 30", 60" and 90" with the flow 
direction. 

3.4. Extraneous pressure signals and bandwidth limitations 

'I'he amplified signal from the pressure transducer may contain extraneous 
contributions due to the sound field in the working section) inertia stresses 
resulting from vibration of the transducer) and electronic noise in the ampli- 
fication system. 

Of these the sound field in the working section was the main source of interfer- 
ence. Its intensity and spectrum were measured by means of a Bruel and Kjaer 
+in. condenser microphone and cathode follower combination fitted with a 
nose fairing. Acoustic disturbances in the working section produced by the intro- 
duction of solid bodies such as Pitot tubes and hot-wire probes could be quanti- 
tatively detected by a microphone in the wall of the settling chamber upstream 
of the intake contraction. In  this way it was established that the faired micro- 
phone itself produced no significant increase in the sound pressure level in the 
working section. 

The sound pressure level was found to increase in the downstream direction. 
At M, = 0.3 the mean-square acoustic pressure amounted to 1.6% of the measured 
mean-square pressure a t  the upstream end of the working section, increasing 
to 5.2% at the downstream end, while at  M, = 0.5 the corresponding values 
were 2.7 and 10.2%. The microphone signal had a broad-band character, the 
power spectral density being highest a t  low frequencies and falling off with 
increasing frequency. Because of the high spectral density of this background 
field at  low frequencies) the spectral density measurements of the pressure field 
were rejected for frequencies less than 300 c/s. The recorded signals for correla- 
tion purposes were also attenuated at  frequencies less than 300c/s by making 
use of the response characteristics of the tape recorder. 

Measurements of the spectrum of the output of the transducer when it was 
mounted in the tunnel wall but shielded from the flow showed that the spectral 
density of vibration pick-up was less than 0.01 times that obtained with the 
transducer exposed to the air flow, a t  all frequencies greater than 2OOc/s, and 
that the total vibration signal was negligible in comparison with the overall 
pressure signal. 

I n  general electronic noise in the amplification system did not amount to more 
than about 0.2% of the mean-square pressure and its effects on root-mean- 
square pressure and spectral measurements were negligible. 

46-2 
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Thus all interference effects on frequency power spectral density and correla- 
tion measurements were removed by rejection of frequencies less than 300 c/s. 
This set the lower frequency limit for these measurements. The upper frequency 
limit for power spectral density measurements was set by the spectrometer used 
a t  31,5OOc/s and for correlation work by the tape recorder response at  about 
30,000 c/s. The bandwidths for these measurements therefore ranged from 
approximately 0.017 < wS*/U, < 1.7 for the thinnest boundary layer and highest 
speed investigated to 0.071 < wS*/U, < 7.5 for the thickest boundary layer and 
lowest speed investigated (where o is the circular frequency, 2n;ft and $7, the 
free-stream velocity). 

For root-mean-square pressure measurements the bandwidth was determined 
by the response characteristics of the amplification system as 80 < f < 100,000 c/s 
(equivalent to a variation from 0,0044 < wS*/U, < 5.5 for the lowest 6" highest 
U, case to 0.024 < wS*/U, < 30 for the highest 6* lowest U, case). Since the 
bandwidth extended to frequencies below 300 c/s it was necessary to correct the 
results for acoustic interference. 

Despite the miniature size of the pressure transducer elements, corrections 
had also to be applied to the root-mean-square and spectral density measure- 
ments for the limitations of transducer resolution. 

For narrow frequency band measurements, convection velocities are not 
quoted for playback frequencies less than 250 CIS (true frequency 1000 c/s) 
because of the difficulty of obtaining no relative phase shift in the two replay 
channels a t  low frequencies. In  the worst case this gives a limiting Strouhal 
number, o)6*/U0, of about 0-24. In  a few cases correlation coefficients are given 
for lower frequencies (down to  400 c/s true frequency); in such cases the associ- 
ated convection velocities have been obtained from mean curves. 

4. The flow under investigation 
4.1. Mean flow parameters 

The mean flow parameters were derived from total pressure measurements in 
planes normal to the free-stream direction and the corresponding static pressure 
at  the boundary surface. Total pressures were measured by means of a Pitot 
tube and no corrections were applied to the measured values. 

Two flow conditions were used. At the lower speed (generally referred to as the 
M, = 0.3 condition) the free-stream conditions were essentially constant along 
the working section; the Mach number M, was 0.297, velocity V, = 329ft./sec, 
and dynamic pressure q, = 1221b./ft2. At the higher speed (referred to as the 
M, = 0.5 condition) there was a small variation along the test section in the 
downstream direction: M, = 0.496 to 0.493, U, = 542 to 539ft./sec, q, = 306 to 
303 lb./ft2. 

The variation with the distance X along the test section of the displacement 
thickness S*, momentum thickness 0, and form parameter H ( =  S*/0) of the 
boundary layer and Reynolds number Re, = Uo6/vo is shown in figure 2. Where 
values of the geometrical thickness of the boundary layer 6 are required they 
have been obtained from the corresponding 6" by means of the relation 
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FIGURE 2. Boundary-layer parameters and root-mean-square pressure fluctuation. Varia- 
tion with streamwise distance along test section. Open symbols and broken lines, 
M ,  = 0-3; full symbols and unbroken lines, M ,  = 0.5. 

6*/6 = 3.88 U,/U, corresponding to the equilibrium boundary layer of Coles 
(1956). The values of b'so obtained agree very well with the x2 for which the experi- 
mental UJU, reach about 0.99. Figure 2 also shows values of skin friction velo- 
city U, derived from the slopes of the profiles of mean velocity U, at small values 
of x2 (the co-ordinate normal to the wall) using the 'law of the wall', 

UllU, = [In (x2 u714 + AI/h', 
with the universal constant K equal to 0.40. 
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FIGURE 3. Boundary-layer mean velocity profiles. 
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FIGURE 4. Profiles of intensity of longitudinal velocity fluctuations. A!,  = 0.5.  

The mean velocity profiles are plotted in velocity defect form in figure 3, 
which shows that over the outer region and part of the constant stress layer 
the boundary layer is exhibiting self-preservation of mean velocity profile. 
The equilibrium profile of Cotes (1956) is included for comparison. 
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4.2. Distribution of turbulence intensity 
The intensity of the longitudinal fluctuating velocity component u1 was measured 
at  three streamwise stations at  M, = 0.5. The results are shown in figure 4, 
where the ratio of root-mean-square velocity to skin friction velocity ui/U, 
is plotted against x2/S. Over the greater part of the boundary layer (x,/S greater 
than about 0.15) the results can be quite well represented by the self-preserving 
form 

( u 3  = V g , ( x z / Q ,  

(where (} denotes a time average) although even in this region there is some 
tendency for u;/U, to increase with increasing Reynolds number (by about 5 % 
over the Reynolds number range covered). However, the measurements of 
mean velocity profile and the longitudinal component of turbulence indicate 
that the boundary layer investigated approximated fairly closely to an equili- 
brium layer. 

Over the inner part of the layer there is a strong influence of Reynolds number 
on ui/& This, of course, is to be expected in the region of transition from outer 
layer similarity to wall similarity. If the data for this region (which do not 
extend to x2U,/u less than 160) are plotted against x2U7/v they appear to form 
a quite consistent extension of the data obtained by Laufer (1954) for the region 
0 < x2UT/v < 90 of turbulent pipe flow. 

The residual value of turbulence intensity in the free stream showed very 
little variation along the length of the working section, the mean value for 
No = 0.5 being u;/U, = 2.5 x No measurement of intensity was made for 
the free-stream condition No = 0.3. 

The maximum values of sound pressure level measured by the faired micro- 
phone in the free stream in the working section were 112 dB (relative to 2 x 
dyne/cmz) and 123 dB at free-stream Mach numbers of 0.3 and 0-5 respectively. 
If the sound field consisted entirely of plane waves propagating in one direction 
the equivalent values of the ratio of root-mean-square acoustic velocity 
perturbation to free-stream velocity would bo 1.8 x and 4.1 x low4 respec- 
tively. Comparison of these values with the measured intensity of free-stream 
turbulence indicates that the velocity fluctuations in the free stream are predomi- 
nantly vorticity fluctuations. 

5. Broad-band measurements and frequency power spectrum 
5.1. Statistical quantities measured 

The broad-band measurements were all particular cases of the double pressure 
space-time correlation function or covariance of the pressure fluctuation at the 
point x at time t and that at  point x + 5 at time t + r, 

&,,(x,t; X+5,t+T) = <P(X, t )P(x+5, t+r) ) ,  

where in the present case of wall measurements x and 5 are vectors confined t o  
the plane of the boundary surface and ( } denotes a time average. 
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If, as in the case of a slowly growing boundary layer, the pressure field can be 
considered to be homogeneous and stationary in time, the correlation function 
is a function of spatial separations and time differences only and can then be 
denoted by Qpp( t l ,  t3, T ) ,  where t1 and t3 are the components of the separation 
vector in the streamwise (xl) and cross-stream (x3) directions respectively and 7 

is the time delay. 
The only measurements of the correlation function in its dimensional form 

were for the particular case of the mean-square pressure 

(p2> = PJ2 = Q,,(O, 0 , O ) .  

The frequency power spectral density $Jw) of the pressure fluctuations was 
obtained by direct spectral analysis rather than via the autocorrelation 
Q,,(O, 0 , ~ )  (although measurements of Qpp(O, 0, r )  were used to check direct 
spectral measurements in one or two cases). The two are related by the Fourier 
transforms 

q5p(w) = Jm &,,(O, 0'7) cos md7, 

Q p p ( O ,  0 , ~ )  = IOm q5,(w) cos m d w .  

7 1 0  

All other broad-band measurements concerned the correlation coefficient 

R,,(t,, t3, 7) = Qpp(tl, t3, 7) /Qpp(0 ,  0,O). 

5.2. Root-mean-square pressure and frequency power spectrum 

The measured frequency power spectral densities are shown in the form 

#,(w) &Id&* 
against wS*/U, in figure 5. Attenuation due to the finite size of the pressure- 
sensing element, more severe the higher d/&*, is evident a t  high frequencies. 

By representing the cross-spectral density or narrow-band correlation as a 
function of the similarity variables w[, /U,(w)  and wt3/Uc(w),  Corcos (1963 b)  
has calculated transducer resolution corrections to frequency power spectral 
density in terms of wr/U,(w) ( r  = radius of pressure-sensitive element). Since 
the present narrow-band correlations are very similar to those assumed by Corcos, 
his data have been used directly with the frequency-dependent convection 
velocity U,(w) taken from figure 15. (In general the values of wr/Uc are small 
enough for there to be little difference between the values given by Corcos's 
method and those found experimentally by Willmarth & Roos 1965.) The cor- 
rected spectral data even when expressed in terms of the wall shear stress 
and boundary-layer thickness in the form q5,(w) [&IT&- 6 against wS/U, do not 
lie on a universal curve, the spectral density increasing slowly with Reynolds 
number at  a given non-dimensional frequency. However, the shapes of the curves 
are accurately similar, as shown by figure 5, where r& has been replaced by 
(corrected) (p,"}. 
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FIGURE 5. Frequency spectra of wall-pressure fluctuations. 

Mil UO s s* dJ6* 

0 0.3 3954 0.618 0.081 0.36 
A 0- 3 3951 1.188 0-149 0.19 
0 0-5 6502 0.431 0.057 0.51 
a 0.5 6483 0.987 0.126 0-23 
0 0.5 6468 1.425 0.173 0.17 

(in./sec.) (in.) (in.) 

The root-mean-square pressure fluctuation data are shown in figure 2. The 
variations of pr/qo and p'/rw with a streamwise distance along the working sec- 
tion, with corrections for background sound field and transducer resolution, 
are given. Resolution corrections were obtained as follows. The corrected value 
of pr/Tw for the case in which the spectral measurements extended to the highest 
non-dimensional frequency (M, = 0.3,S = 1*188in., for which 0.60 < wS/U, < 60) 
was obtained by integration of the spectrum. pr /rw for each of the other sets 
of spectral measurements was obtained from this value in proportion to the 
square roots of the ordinates of the corrected spectral curves making use of the 
similarity in shape noted above (and so avoiding integration of spectral curves 
over limited non-dimensional bandwidths). Hence the variation of the ratio 
of corrected to measured root-mean-square pressure p'/pm with d/S (figure 6) 
was obtained. Corrections for all other conditions were based on this curve. The 
results apply essentially for 0 < wS/U, < 60. The magnitude of the corrected 
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FIGURE 6. Correction to root-mean-square pressure fluctuation as a 
functjion of transducer size. 0 ,  M a  = 0.3; 0, Ma = 0.5. 
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FIGURE 7.  Variation of ~ ' / T w  with Reynolds number. A, Harrison (1958); B and C ,  Will- 
marth (1959); D and E, Willmarth & Wooldridge (1962); F, Skudrzyk & Haddle (1960); 
G and H, Sorafini (1963); J ,  Bull & Willis (1961). Present tests corrected for transducer size: 
-0-, &Io = 0.3; -a-, Ma = 0.5. Numbers indicate value of d/S*. 
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spectral density a t  d / U 0  = 60 indicates that higher frequencies make a signifi- 
cant contribution to p‘. Thus the corrected values of p’/rn. should be somewhat 
higher than the values given, but it is not possible to extimate by how much 
(the corrections used are in fact slightly less than the experimental values given 
by Willmarth & Wooldridge 1963). 

The variation of the corrected values of p’/rw with Reynolds number Re, 
and comparison with other data are shown by figure 7.  In  addition to the data 
shown we have two values of p’/rw obtained by extrapolating data measured 
with transducers of various sizes to d/S* = 0; Hodgson (1962) found p‘/rw = 2.2 
(from data covering an Re, range of roughly 1000 to 15,000) and Willmarth 
& Roos (1965) found p,‘/rw = 2.66 at Re, = 38,000. (Note also that Willmarth & 
Roos give a revised value corresponding to point E of figure 7.) For the present 
resultsp’/rw increases from 2.11 at Re, = 6,400 (Mo = 0.3) to 2.80at Re, = 33,800 
(No = 0.5) a t  the rate of about the 0-17 power of Reynolds number. This trend 
contrasts with the results found by Corcos (1962) and by Bakewell et al. (1962) for 
fully developed pipe flow, since both of these investigations showed a systematic 
decrease in p’/rn. with increasing Reynolds number. In  $4.2 it was noted that 
the value of u;/U, over the outer part of the boundary layer (x,/b > 0.15) showed 
a small increase with increasing Reynolds number. If this effect is not due to 
experimental errors or uncertainties in determining S, and it is taken as indica- 
tive of an increase in intensity of all turbulence components, it could account for 
an increase in p?’/rm of from 5 to 10 % (depending on the relative importance of 
turbulence-turbulence interactions and turbulence/mean shear interactions in 
determiningp,’). However, it  does not seem sufficient to account for the whole of 
the observed increase in p‘/rw, which is about 21 yo over the same range of Rey- 
nolds number. The other boundary-layer data (figure 7) do little either to sup- 
port or to oppose the trend shown by the present results, suggesting only that if 
all results were corrected to zero size of pressure transducer (which would reduce 
the existing scatter) the effect of Reynolds number over the range 

would not be large. 
3000 < Re, < 100,000 

From the autocorrelation the integral time scale of the pressure field, defined as 

can be obtained. Use of the autocorrelation corresponding to the spectral curve C 
of figure 5 ,  which is virtually free from transducer resolution effects and which 
is given by 

$,(w) Uo/q$S* = (3.7 exp ( - 26)  + 0.8 exp ( - 0.476) - 3-4exp ( - 86)} (1)  

where 071 = wS*/Uo, leads to rn Uo/&* = 3.84. In terms of S/U,, which the similarity 
of frequency power spectra indicates is the more appropriate time scale, the 
corresponding value is rAUo/S 2: 0.47. The value of the integral time scale 
r m  

J 
R,,(O, 0,  T ) ~ T  (which is equal to n$,(0)/(p2)) is 1-10 S*/U,. 

--m 
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5.3. Broad-band space correlations 

The experimental broad-band space correlations Rpp(El, E3, 0)  are shown in 
figure 8 as a function of spatial separation divided by 6". A good collapse of data 
for the various flow conditions is obtained in this way. The experimental points 
are most numerous a t  spatial separations for which the correlation coefficient 
and the slope of the mean curve have fairly small values and in view of the 
inevitable experimental scatter it is not really possible to distinguish between 
S* and 6 as length scales. 

1 .o 

0.x 

0.6 

R 

0.4 

0.2 

0 

-0.2 

~~ 

B = O o  30" 60° 90" & S 6*  
(inches) (inches) 

.' 0-3 41.6 0081 

4 0 I 0 3  87.6 0-149 

0.5 69.6 0126 

18 20 2 -1 6 8 10 12 14 16 0 

W* 
FIGURE 8. Space correlations of the wall-pressure field, RDD( cos /?, 5 sin b, 0) at 

various angles to the flow direction. 

The longitudinal correlation curve becomes and remains negative for spatial 
separations greater than [JS* = 3.9, while the lateral correlation remains 
positive at all values of lj3/S* up to the largest at  which measurements were 
made. The curves for the intermediate angles have intermediate forms. That for 
/3 = 30" has a zero crossing at  [IS* = 7 while that for /3 = 60" remains positive. 

Longitudinal correlations have been measured previously by Willmarth & 
Wooldridge (1962) and by Hodgson (1962). Hodgson's measurements were 
restricted to separations > 66" and there they show negative values of correla- 
tions very similar to the present results. In  contrast, Willmarth & Wooldridge 
obtained positive values for all separations up to about 126". The negative values 
of longitudinal correlation at  large separations obtained in the present investiga- 
tion are believed to be real, and a reflexion of the fact that the frequency power 
spectral density falls off with decreasing frequency for oS*/U, less than about 
0.2. (Hodgson's results for the pressure spectrum on the wing of a glider show a 
greater fall-off at  low frequencies than the present results and the negative loop 
on the spatial correlations is slightly larger.) The low-frequency cut-off at 300 CIS 
(see $3.4) could also produce this effect but calculations show that in general its 
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contribution is negligible. In  the worst case it would make the minimum value 
of Rpp more negative by no more than 0.02. 

The present lateral correlation values are slightly higher than those of Will- 
marth & Wooldridge for 0 < &/S* < 8 while for &/S* > 8 the two sets of data are 
almost identical. 

12 10 8 6 4 2 0 7 4 6 8 10 11 

5,P" 
FIGURE 9. Contours of constant space correlation, Bs9(.&, t8, 0) 

of the wall-pressure field. 

From the space correlations for the four angles to the flow, the correlation 
pattern of the pressure field can be mapped out as a set of isocorrela~ion contours 
as in figure 9. The resulting pattern shows that at  small spacings the field appears 
to be very nearly isotropic. The longitudinal and lateral micro scales (which are 
equal to the radii of curvature of the appropriate space correlation curves at 
zero separation) cannot be determined accurately from the experimental data 
because there are few points at small separations and because of transducer 
resolution errors which have the greatest effect on the fine scale motion. The 
data indicate upper limits on these scales of roughly 0.56" or 0.068. As spatial 
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separation increases anisotropy develops, the scale in the lateral direction 
exceeding that in the longitudinal direction. The longitudinal integral scale 

( W p p  = J IRpp(ti,o)o)Idti 

is found to be 3.206" or about 0.406. The lateral integral scale (A,& defined 
similarly has the value of 6.748" or about 0.846. VC'e thus have 

- W  

( A 3 ) p p / ( A l ) p p  = 2-10. 

In  an incompressible flow, the wall-pressure correlation should satisfy the 
boundary condition, derived by Phillips (1954) and Kraichnan (1956b)) that 
the integral area scale /Im s R p p ( 6 1 .  53)O)  dt1d63 

be zero, and should therefore be negative over parts of the field. Although nega- 
tive values of correlation are observed, the experimental data do not satisfy 
this condition; the value of the ratio 

obtained by integration over a circle of radius 208" (the limit of the experimental 
data) is about 0.5. Three possible reasons why the measured integral scale is not 
zero are that, first, the negative area required for balance may be contributed 
by small negative values of Rpp at large 5 ( > 208"); secondly, that the experi- 
mental measurements of small correlation values are not sufficiently accurate; 
and thirdly, that extraneous effects such as the background sound field in the 
wind tunnel have not been entirely removed by high-pass filtering and are 
causing the correlations at  the larger separations to have more positive values 
than they otherwise would. 

Theoretical work by Kraichnan (1956b, 1957) and later by Hodgson (1962) 
on particular models of boundary-layer flow indicates that if the wall-pressure 
field is mainly the result of interaction between the turbulence and the mean shear 
(through the pressure-source term (aU,/&,) (au,/ax,)), then the correlation should 
satisfy the additional boundary condition that the longitudinal integral scale 

yw %&i7 090) d61 

and the integral time scale 
P W  

be almost zero. Hodgson also showed that the lateral correlation Rpp(O, &, 0) 
should be positive at  all t3. The observed correlations are qualitatively in agree- 
ment with these predictions, but the integral scales are not zero-the ratio 

r w  
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is about 0-4 and 

about 0.29. The reasons for the area scale not vanishing are relevant here also, 
and suggest that the values of the experimental integral scales should be closer 
to zero.The data therefore support the conclusion of Kraichnan and Hodgson 
that a large part of the mean-square pressure results from the interaction of 
turbulence and mean shear. The same conclusion has been drawn also by Will- 
marth & Wooldridge (1963) from their measurements of pressure-velocity 
correlations. 

5.4. Broad-band space-time correhtions and convection velocities 

All the space-time correlation measurements made in the present series of experi- 
ments, for the various flow conditions and for the spatial separation in various 
directions to the flow, can be found elsewhere (Bull, Wilby & Blackman 1963) as 
sets of curves of correlation coefficient R,,([,, &, 7) against the non-dimensional 
time delay Uo7/8* at various constant values of spatial separation. Here only 
one typical set of correlation curves is given (figure 10). 

0 9  - 

0.8 - I 

FIGURE 10. Typical longitudinal space-time correlations of the wall-pressure field, 
RB,((,,O,~). M ,  = 0.3, 6* = 0.149in., S= 87.6in. (arrows indicate locations of origins). 

The space-time correlation curves for separations in the streamwise direction 
(for example figure 10) clearly have the character which would be associated 
with a convected pressure field slowly losing its coherence as convection proceeds. 
Whereas to an observer at  a fixed point the pressure would appear coherent only 
for short times, to an observer who moved with the field so as to be always at the 
position of maximum correlation the field would appear to lose coherence quite 
slowly. 
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The variation with El of 7,, the time delay for which the c1 = constant curve 
of R,,(<,, 0,r )  against 7 touches the envelope of all such curves, defines the space- 
time path of a moving reference frame relative to which the rate of decay of the 
pressure correlation is a minimum at any given time delay. This path is shown 

10 15 20 25 

tlP* 
FIGURE 11. Space-time path of reference frame giving minimum decay rate of the pressure 
correlation. 

MlJ s s* 
0 0.3 41.6 0.081 
A 0-3 87.6 0.149 
0 0.5 22.6 0.057 
n 0.5 69.6 0.126 

0.5 106.6 0.173 

by figure 11. The velocity of the reference frame or convection velocity, 

74 = dCl/d7,, 

is shown as a function of c1/6* by figure 12. As previously found by Bull & Willis 
(1961) and Willmarth & Wooldridge (1962)) UJU, increases with increasing 
spatial separation. Its asymptotic values from the present data are 0.53 a t  small 
5, and 0,825 at large C1 (compared with 0-56 and 0.83 respectively measured by 
Willmarth & Wooldridge (1968)). Figure 12 also shows values of the average 
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0 5 10 15 20 25 30 35 40 45 

511s" 

FIQURE 12. Variation of broad-band convection velocity with spatial separation and 
correlation direction. x Is* 

Mo (in.) (in.) P 
0 0.3 41.6 0.081 0" 
A 0.3 87.6 0- 149 0" 
X 0-3 87.6 0.149 30" 
+ 0.3 87.6 0.149 60" 
0 0.5 22.6 0.057 0" 
n 0.5 69.6 0.126 0" 
0 0.5 106.6 0.173 0" 

convection velocity = 51/7c for comparison with the corresponding values 
derived from correlations Rpp([ cosp, sin p, 7) (where 6 is the magnitude of the 
separation vector) with p = 30" and p = 60". The behaviour is similar to that for 
,f3 = 0" just discussed, but with the important difference that the rate of the initial 
increase with increasing gl/S* becomes progressively greater as ,8 increases, 
that is as the value of &/a* for a given &/S* increases. The asymptotic value of 
q /U0  at small separations is not well defined in either of these cases but the 
asymptotic value at  large separations is virtually the same as that for /3 = 0", 
namely 0.82 to 0.83. 

The rate at  which the pressure correlation, as seen by an observer moving at  
U,, falls off as distance from the iilitial point of observation increases is shown by 
the plot of R,,([,, 0,7,) against (,/S*, figure 13. In  contrast to the case of the con- 
vection velocities, &* does not seem to be a good choice of length scale. Figure 13 
shows that, for a given (,/a*, R,,([,, 0,7,) falls off with increasing &* or Reynolds 
number. The results of Willmarth (1959) and Wilmarth & Wooldridge (1962), 
also shown in figure 13, tend to conform to this Reynolds number trend. The 
effect of Reynolds number would be accentuated if 6 were used as the length 
scale instead of S*, which suggests that the scale for the case of the pressure 
field dominated by motion close to the wall in the inner part of the constant 

47 Fluid Mech. 28 
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stress layer, namely v/U7, might be more appropriate. Therefore the data have 
also been shown as a function of [,U,/v in figure 13. They still show some 
scatter but the collapse is considerably better than that obtained in terms of 
tl/S* although now the Reynolds number trend, at  least in the present data, 

I 1 I I I 1 1 1 I 

0 5  1 0  I 5  2 0  2 5  3 0  3 5  4 0  4 5  

(EIUTi4 x 

FIGURE 13. Longitudinal correlation in a reference frame moving a t  convection velocity. 

Mo S* (in.) Rep 

15,100 Present data i 
0.3 0.081 13,700 

A 0.3 0.149 25,400 
0 0.5 0.057 
n 0-5 0.126 33,300 
0 0.5 0.173 45,700 
Q 0.333 0.070 11,000 
0 0-465 0.073 
0 0.672 0-078 28,000 
X 0.180 0.041 49,500 Willmarth & Wool- 

has been slightly reversed. If UT/Uo is taken to be proportional to Rest (where 
Re, = Uo&/v), tl/&* is proportional to ([,/&)Re! (since in the case of a self- 
preserving velocity profile &*/& is proportional to U,/U,) while $,U,/v is propor- 
tional to ( t l /8)Rej;  the present data would lie fairly well on a single curve if 
plotted against a parameter with an intermediate form of Reynolds number 
dependence such as &/&) Re$ although they would not then be so consistent 
with the data of Willmarth. 

19,000 Willmarth (1959) 

dridge (1962) 

I 
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6. Narrow-band measurements 
6.1. Correlation of $ltered pressure signals 

The various frequency or wave-number components which make up the pres- 
sure field can be examined by filtering the pressure signals into narrow frequency 
bands and making correlation measurements on the resulting signals. 

Let p(x,tllw) be the signal obtained by passing the output from a pressure 
transducer a t  x through an ideal filter which has a narrow pass band, centred 
on frequency w and of width Aw. If the pressure field is considered homogeneous 
and stationary the space-time covariance of two such signals (from identical 
filters) (p (x , t l /w)p (x+E,  t + ~ / / w ) )  can be written as Qpp(tl, t3, T llw), a function 
of the separation variables and w only. It can be shown (see, for example, Bull 
1961; Corcos 1962) that 

~ ~ ~ ( t ~ ~ t ~ + ~ )  = 2l$,,(t1,t3,w)\cos w + ~ w ,  ( 2 )  

where 5 5 , , ( t I , t 3 3 , 4  = ] $ p p ( t I 7 t 3 4 l e i a  

is the cross-spectral density of the pressure fluctuations, a partial Fourier trans- 
form of the broad-band space-time covariance given by the relations 

(3) 

The covariance of ( 2 )  can be converted to a correlation coefficient 

~ ~ ~ ( t ~ ,  t3, ~114 
which is independent of the filter bandwidth by dividing it by the mean-square 
filtered signal, Q,,(O, O,Ol /w)  or 2$,,(0,0, w )  Aw. (Note that 2$,,(0,0, w )  is the 
frequency power spectral density $,(a) as previously defined.) Thus 

Particular cases of (3), those for which T = 0 , ~ / 2 w ,  were used by Harrison (1958) 
as the basis of measurement of the real and imaginary parts of the longitudinal 
cross-spectral density. 

In  the present experiments, measurements were made of the amplitude of the 
narrow-band correlation coefficient, that is of 

l~p , ( t l , t 3 J l l~ ) l  = 1$,,(51,~3~~)I/$p*(o~ 0 ,w)  

and of the phase angle a. ~ B , p ( ~ l , O , ~ ~ ~ w ) ~  corresponds to the function A(6,w) 
used by Corcos (1962). The quantity I B p , ( ~ l , ~ 3 , ~ / 1 w ) 1 2  was used by Harrison 
(1958) as a measure of the ‘coherence ’ of the narrow-band pressure fluctuation 
at a downstream point with that at  an upstream point. The departure of this 
quantity from unity gives a measure of the intensity of the uncorrelated com- 
ponent developed by the pressure fluctuation in its travel between the two points. 

47-2 
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The phase angle has a non-zero value because of the convected nature of the 
wall-pressure field. It is a function of frequency and is determined by the con- 
vection velocity U,(o) of a particular component of the field. For the experimental 
data to be presented we shall define &(w)  by means of the relation 

a = -w€Jv,(w). (6) 

In practice, owing to the finite, though small bandwidth of the filters used, the 
narrow-band correlation coefficient a t  a given 5, shows a damped sinusoidal 
variation with r ;  the maximum amplitude occurs a t  r = t l /U,(w) and is there 
equal to the zero bandwidthvaluegiven by (5); see Bull (1961) and Corcos (1962). 

6.2. Functional form of the narrow-band space-time correlations 

Before considering the experimental results for the narrow-band space-time 
correlation function of the wall-pressure field we shall consider possible forms 
which this function might take. 

(i) 'Frozen ' pressure pattern 
First, consider a spatial pattern of pressure convected in the x,-direction, 

without change, at  velocity U,. The correlation function of such a pattern satisfies 
the relation 

Q&l, ,539 7 )  = QP&l - u e 7 7  C3,O) .  

Substitution of this relation in (3) leads to 

We then have 
Qfpp(L, 53, w )  = $,,(O, 63, w )  e-iwsl'uc. 

R,,(t,, 0, +J) = cos (wr- @wu 
Hence by (5) the longitudinal narrow-band correlation coefficient is given by 

( 7 )  

Note that the relation between phase angle and convection velocity here is the 
same as that used to define the experimental value of [ { (w) ,  equation (6). 

(ii) Almost frozen pressure Jield with constant spatial scale 

reference moving at a constant speed U, in the x,-direction is given by 
Suppose that the broad-band correlation of the field relative to a frame of 

where R,(O) = R&O, 0) = 1. This represents a field which has similar spatial 
correlation properties at  all time delays, the space correlation magnitude simply 
varying with time delay. (This representation has been previously used by Lilley 
& Hodgson, 1960.) 
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I 
m 

-m 
~ ~ ( 7 )  = 1 $(w)eio7dw, 

741 

Let 

For a homogeneous stationary field, R7(7) and R,([,, c3) are real even functions 
of the variables and hence $ ( w )  and ~ ( k , ,  t3) are both real and are even functions 
of w and k, respectively. Then we have, using (3) and (9) 

Now it will be assumed that the pressure field is almost frozen, that is, that 
R,(T) is a slowly varying function of 7. $ ( w )  will then have large values over a 
narrow range of frequencies on either side of zero and will be negligible elsewhere 
(but the limiting case where $ ( w )  becomes a delta function is avoided). It will 
also be assumed that R,(tl,  c3) has appreciable values only in the region of = 0 
(that is, is almost a delta function), so that ?(kl,t3) will be a slowly varying 
function of k,. The main contribution to $ p p ( ( l ,  c3, w )  will then come from wave- 
numbers in a narrow band centred on k, = - w/U, and we may regard y(k, ,  c3) as 
constant over this band with the value y( - w / q ,  5,) (or y(w/U,, c3) since y is 
an even function of 6,). We can then approximate to (10) by 

m 

-m 

Hence cz = - w[,/.C$ and 

In particular, the longitudinal correlation coefficient is 

~,,(&, 0 , 7 / I W )  = R7(&1/Uc) cos (w7- wtl/Cc).  (12) 

This result was previously derived by Bull (1961). It should be noted that, in the 
separable variables form assumed for the correlation coefficient referred to a 
moving reference frame (8) ,  the shapes of the space-time correlation curves 
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remain similar a t  all times and therefore the model cannot take account of any 
variation in the rate of loss of coherence with scale of the components of the 
pressure field. 

(iii) Field for which spatial pattern is  not similar at all stages of evolution 
Previous experimental investigations of the longitudinal cross-spectral 

density (for example Harrison 1958) have indicated, a t  least over part of the 
frequency range, a functional dependence of the form 

-q&l, 0, = A(wC,/U,) cos (w7- 41/&), 

which implies that the smaller the wavelength of a pressure field component 
the faster it loses coherence. For this type of relationship to hold a t  small values 
of w[,/V,  it would be necessary for ~ k ? p p ( [ l , O , ~ ~ ~ u ) ~  to approach unity both 
as --f 0 a t  finite o and as w + 0 at finite 6,. The first of these conditions is auto- 
matically satisfied since the correlation amplitudo must tend to unity as [, + 0 
no matter what the value of w and no matter what the form of the function A .  
But, if \RpP(&, 0,  7/10) I were to tend t o  unity as w + 0 even a t  finite ti, this would 
imply that the low-frequency components of the wall pressure were coherent 
over very large distances, which in turn (following the argument of Fisher & 
Davies 1964) would lead to the anomalous conclusion that the turbulent motion 
in the boundary layer which gives rise to these pressure fluctuations is almost 
unaffected by the mean shearing motion. Thus the relationship cannot be 
expected to apply a t  low frequencies while remains finite. (Fisher & Davies 
found departures of the correlation amplitude from w[,/V, dependence in jet 
turbulence.) However, it may be an acceptable asymptotic form for finite and 
not too small values of w[,/U,. Corcos (1962) has suggested that the general form 
of the narrow-band correlations may be 

(13) R p p ( [ i ,  63,71Iw) = c(wci/q,  w [ 3 / q )  CoS (07-  w ( i / q ) ,  
except for small values of w t J V ,  and wt3 /V ,  when ti and g3 are non-zero. 

6.3. Experimental results 

From curves of the longitudinal correlation coefficient Rpp([,, 0 ,  7110) plotted 
against time delay (of which figure 14 is typical) values of the correlation ampli- 
tude and convection velocity t&(w)  (as defined by (6)) were obtained. U,(w)/U, 
is shown as a function of wS*/U, in figure 15.7 Some experimental scatter is 
evident. This is probably partly due to the difficulty of accurately phase matching 
the Q-octave filters, especially a t  the lower frequencies. The results are in fair 
agreement with the boundary-layer data of Willmarth & Wooldridge as given by 
Corcos (1963b). Corcos's pipe flow convection velocities (Corcos 1963b) are in 
general about O-lU, greater than the boundary-layer data. Figure 15 also shows 
convection velocities determined from correlations for p = 30" and 60". There is 
considerably more experimental scatter here, particularly in the 60" case, where 
the time delays are very much smaller than for the same [ in the stream direction. 

t Note that the convection velocity data previously given in figure 18 of AGARD 
Report 455 have since been found to be in error a t  the two smallest spatial separations. 
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- 1000 - 500 0 500 1000 1500 2000 2500 

Time delay (ysec) 

FIGURE 14. Typical narrow-band longitudinal space-time correlations &Io = 0.3, S* = 0.149 
in., [,is* = 5-00. Frequency a t  3.75 in./sec replay speed: 0, 400 cis; x , 630 c/s; A ,  1000 cis; 
0 , 1 6 0 0  cis; + ,2500 C/S. 

However, the convection velocities are essentially the same as those for @ = 0". 
The mean @ = 0" curve of figure 15 was used in obtaining transducer size correc- 
tions to root-mean-square pressure and frequency power spectral density ( 3  5.3). 

The interesting feature of the behaviour of I R p p ( ~ l , O , ~ l ~ w ) I  (figure 16a) is 
that for a given t1/6* it is independent of frequency at  sufficiently low frequencies, 
while a t  the higher frequencies it depends only on the non-dimensional parameter 
w&/U,(w). The curve for high frequencies can be fairly well represented by 

lRPP(tl, 0, +)I = exP(- O.lw~,/u,(w)}. (14) 

The amplitude of the lateral correlation IR,,(O, [ , , ~ / l w ) I  (figure 16b) shows 
similar behaviour, being independent of frequency at low frequencies and a 
function of w[,/U,(w) at the higher frequencies. The asymptotic high-frequency 
curve can be quite accurately represented by 

IR,,(O, t3?+)1  = e"P{- 0.715wt,lU,(w)}. (15) 

The asymptotic low-frequency correlation amplitudes are plotted in figure 17. 
Values of ~ R p p ( ~ l , ~ 3 , ~ ~ J w ) ~  along lines at  angles of 1 = 30" and 60" to the 

stream direction, that is for cl/& = 43 and 1 /43  respectively, are plotted against 
w&/V,(w) in figure 18. Values of Q ( w )  taken from the mean curve of figure 15 
have been used in forming the abscissae. The data are compared with curves 
obtained by taking the products of values from the asymptotic curves for the 
longitudinal and lateral correlation amplitudes. As in the longitudinal and lateral 
cases the points tend to fall on a common curve at  higher values of w[,/U,(w) 
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0 3  
0 1 2 3 4 5 6 7 8 

w s * / u ,  
FIGURE 15. Narrow-band convection velocities. (a) = 0. 

Mo 8' Eli&* 
0.3 0.149 0.82 
0.3 0.149 1.66 0 

v 0.3 0.081 3.07 
A 0.3 0.149 5.00 

0.3 0.081 9.24 
0 0.5 0-126 7-93 
'3 0.5 0.126 11.91 
Q 0.5 0.126 15.82 
n 0.5 0-126 19.75 

I Willmarth & Wooldridge (1962) as given by Corcos (19636). 

+ 

Mo S* (in.) US*  P (6) ,8 = 30°,600. 

e 0.3 0.149 0.82 30" 
A 0.3 0.149 3.33 30" 

0.3 0.149 6.72 30" 
0 0.3 0.149 0.82 60' 
A 0.3 0.149 3.33 60 
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30 

0 1 2 3 4 5 6 7 

wtdUc(o)  

FIGURE 16. Amplitude of narrow-band space-time correlations. (a)  Longitudinal (p = 0")  ; 
see figure 15a for notation. (b) Lateral (p = 90"). 

Mo 
0.3 
0.3 
0.3 
0.3 
0.3 
0.5 
0.5 
0.5 

6* (in.) 

0.149 
0.081 
0.149 
0.081 
0.149 
0.126 
0.126 
0-126 

f;,P* 
0.82 
1.52 
1-66 
3.07 
5.00 
3.96 
7.90 

11.86 
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but depart from it at  low values. However, there are fewer data in this case and 
the effects are not so well defined. The relation 

lRpp(517631  T l lW) l  = IRpp(51 ,077 / IW) I  X 1 R p p ( 0 , & ~ 7 ) ) W ) l  

seems to give a reasonable approximation to the observed values. 

0.8 

0.6 

0.4 

0.2 

0 2 4 6 8 10 12 14 16 18 20 

&/S* and &/S* 

FIGURE 17. Asymptotic values of narrow-band space--time correlation amplitudes at 
low frequencies. 

0 0.3 0.149 0.82 0.71 0.41 

I 0.3 0.149 3.33 2.88 1.66 

I 0.3 0-149 6-72 5.82 3.36 

0 I 2 3 4 5 6 7 

WE11 U C ( W )  

FIGURE 18a. For legend see facing page. 
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M ,  6* <is* <,/a* <,is* 
(inches) 

0 0.3 0.149 0.82 0.41 0.71 

A 0.3 0.149 3.33 1.66 2.88 

0.3 0.149 6-72 3.36 5.82 

rmptotic 

0 0.5 1 1.5 2 2.5 3 

W S l 1 U A ~ )  

FIGURE 18. Amplitude of narrow-band space-time correlations (a )  p = 30°, 
( b )  p = 60". 

6.4. Calculation of broad-band correlations from narrow-band results 

The extent to which the narrow-band correlation coefficient can be represented 
by a function of the parameters w[,/U,(w) and O [ ~ / U , ( O )  only will now be briefly 
examined. This form has been used extensively by Corcos (1962) as a basis for 
calculating broad-band space-time correlations of the pressure field from narrow- 
band data. If the narrow-band correlation coefficient is given by (13) then the 
broad-band covariance is given by 

m 

&py([l, [3> = so $ p ( w )  c(wcl/q(w)Y w 6 3 / q ( w ) )  'OS ( w 7 - w 6 1 / ~ ( w ) )  dw' (16) 

As illustrations, only the two particular cases of the longitudinal and lateral 
space correlations will be considered. If C(w[,/U,(w), 0) is represented by 

exP ( -  Clwsl/U,(w)) 

as in (14) and C(0, o[,/U,(w)) by exp ( - C ~ W [ ~ / U ~ ( W ) )  as in (15), and $ p ( w )  is also 
represented by a sum of exponential terms such as A,, exp ( - a,6) as in (1) then 

where ri = Uo[,/U,(w) 6". (p2} is obtained as &,,(O, 0,O) and hence R,,([,, 0,O) 
can be calculated. The expression for Q p p  (16) is a genuine Fourier transform 
only if U,(w) is independent of w.  However, although UJw)  does vary with w a 
representative constant value can be assigned without introducing appreciable 
errors. Equation (17) was evaluated using the expression for $Jw) given by (1) 
and assuming a constant convection velocity for each term equal to that corre- 
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sponding to the wS*/U, at its half-power point (q,/lJo = 0.795, 0.653 and 0.865, 
for the three terms of (1) respectively). The result is compared with the mean 
experimental curve in figure 19a. The agreement is seen to be quite good. In a 
similar way 

The lateral broad-band correlation calculated from this expression is compared 
with the experimental mean line in figure 19b.  The agreement is very good. 

( a )  Longitudinal correlation 
- hlean experimental curve 
_ _ _ _ _  Calculated from narrow-band 

-- Calculated from Taylor's hypothesis 
correlations 

20 25 I 

5 10 15 

( h )  Lateral correlation 

Mean experimental curve 

correlations 
_ _ _ _ _  Calculated from narrow-band 

\ 

5 10 15 20 25 

&la* 
FIGURE 19. Comparison of measured broad-band space correlations with 

calculations based on Taylor's hypothesis and narrow-band data. 

Good agreement would be expected at close spacings where the broad-band 
correlation coefficient is high, because then wCJU,(w) and w€JUc(o) dependence 
extends down to very small values of the frequency parameters. However, at  
larger spacings where this dependence breaks down over a greater range of 
values of the parameters, whereas the relative errors introduced tend to be larger, 
the corresponding correlation coefficients are much smaller, and the rather 
large relative errors give rise to fairly small absolute errors. The net effect is a 
fairly good reproduction of the broad-band correlation over the whole separation 
range. 
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7. Discussion 
7.1. Equivalence of frequency and longitudinal wave-number components 

It has been assumed on several occasions in this paper that a fixed-point fre- 
quency component of the wall-pressure field arises from convection of a corre- 
sponding longitudinal wave-number component of the pressure field (Taylor’s 
hypothesis) according to the relation o = k, U,(k,). Justification of this assump- 
tion requires that the various wave-number components behave essentially as 
if they were frozen, and that a unique convection velocity can be associated 
with a given wave-number so that a particular frequency is due to one wave- 
number (or a narrow band of wave-numbers) and not a wide range of wave- 
numbers with a wide range of convection velocities for which the product k,U, 
is constant. Figure 15 shows that within fairly narrow limits (in general better 
than 10 %) it  is possible to associate a unique value of V,(w)/U, with a given 
Strouhal number wS*/U, and hence, if the components are very nearly frozen, 
with a given value of k,S*. The degree to which the various wave-number 
components behave as if they were frozen can be gauged by comparing the 
broad-band space correlation, calculated from the frequency power spectral 
density on the basis of this assumption, with the corresponding experimental 
result. For frozen wave-number components 

if r$p(o) is given by (1) .  Figure 19(a)  shows the comparison between calculation 
and experiment. There is quite good agreement between the two, indicating that 
it is an acceptable approximation to identify fixed-point frequencies with longi- 
tudinal wave-numbers. 

7.2. Location of pressure Sources 

If, as discussed above, the narrow-band convection velocity is a function of the 
non-dimensional wave-number kid* only and it is assumed that velocity dis- 
turbances in the boundary layer are convected a t  local mean flow velocity (as 
indicated by the measurements of u1 spectra and preseure-velocity correlations 
made by Wooldridge & Willmarth (1962)) then the fluctuating pressure com- 
ponents of a given frequency or longitudinal wave-number can be associated 
approximately with velocity disturbances whose ‘centre of gravity’ is at  the 
particular distance from the wall where the mean velocity is equal to U,(w). 
Similarly the centre of gravity of disturbances repsonsible for the broad-band 
correlations can be located where the mean velocity is equal to the observed 
broad-band convection velocity. 

At very small separations where the broad-band convection velocity V, 
approaches 0.53U0 the x2 value for the present experiments is in the range 
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35 < xzUT/v < 70 (0.015 > xz/6 > 0.006) depending on the Reynolds number 
(possible effects of Reynolds number on U, which could only be investigated by 
very much more detailed experiments are neglected here). This implies that a t  
these separations the wall-pressure field receives important contributions from 
sources in the transition region (usually taken as 5 < x2UT/v < 30) between the 
viscous sublayer and the fully turbulent part of the constant stress layer and also 
from the inner part of the latter, as well as from sources further out in the bound- 
ary layer. 

On the other hand the asymptotic value of the narrow-band convectionvelocity 
at  high frequencies is 0-59U0, which would locate the centre of gravity of the velo- 
city disturbances giving rise to the highest-frequency pressure components at 
an xp UT/v value depending on Reynolds number of from 70 to 150 (x2 /S = 0.030 
to 0.013), rather further from the wall than indicated by the broad-band data. 
Although the difference of about 10 yo in the two convection velocities can prob- 
ably be partly accounted for by experimental errors and the different methods 
of defining convection velocity in the two cases, the broad-band convection 
velocity (which might if anything have been expected to be the higher since it 
contains some contributions from large-scale (faster moving) as well as small-scaIe 
turbulence) is subject to additional errors from the process of extrapolating the 
space-time graph (figure 11)  to the origin and taking the slope there, and the 
value obtained may therefore be too low (compare 0*56li, obtained by Will- 
marth & Wooldridge 1962). However, the results clearly point to the fine-scale 
motion in the innermost part of the fully turbulent region of the constant 
stress layer as an important source of wall-pressure fluctuations. It seems 
likely that sources in the transition region also make a significant contribution 
but because of the apparent inconsistencies in the data it is not possible to be so 
definite on this point. 

The fact that the broad-band convection velocity approaches 0.825U0 at large 
separations suggests that at  this stage the correlation is due to eddy systems 
with centre of gravity at  0.25 to 0.31 6 (i.e. just outside the constant stress layer) 
but fairly widely distributed throughout the boundary layer with an important 
contribution from the large-eddy structure of the layer. Since the narrow-band 
convection velocity appears not to exceed O-9Uo it  seems that eddy systems whose 
centres of gravity are located further from the wall than about 0.56 make no 
significant contribution to the wall-pressure fluctuations. 

7.3. Division of theJield into two wave number furnilies 

The variation of the amplitude of the narrow-band longitudinal and lateral 
correlations with frequency and spatial separation (figure 16) suggests that the 
pressure field comprises two families of wave-number components, one of high 
wave-number components which lose coherence with wLj,/U,(w) and wt3/U,(w) 
similarity (as in case 3 of §6.2), and the other of low wave-number components 
which lose coherence as a group independently of wave-number (as in case 2 
of $6.2). 

Divergence from wLj,/U,(w) and wLj3/?&(w) similarity occurs at  higher values of 
these parameters the greater the separation, but always at  roughly the same value 
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of oS*/U,(w). Thus the division between the two families can be characterized 
by the Strouhal number at  which the curve of correlation amplitude for the high 
wave-number similarity region has a value equal to the limiting low-frequency 
value; that is lBpP(tl, 0,~110)1 or IB,,(O, t3,7110)1 at a given separation. (This 
Strouhal number has the advantage that it can be readily obtained but it does 
represent a somewhat low estimate of the dividing Strouhal number.) Both the 
longitudinal and lateral correlations give values which are very nearly constant 
over the range of separation investigated. In  both cases the average value is 
wS*/U,(w) = 0.36. This corresponds to a wavelength A, in the stream direction 
of 2jrr6*:/0.36 = 17.46* or about 26. The convection velocity for this wavelength 
is about O-SlU,t so that in terms of distance from the wall the division between 
the two families occurs, depending on Reynolds number, in the region of 
x2 = 0.20-0.376 or somewhat closer to the wall. Thus the high wave-number 
family of pressure eddies results from motion in the constant stress layer while 
the low wave-number family is due to the outer region of the boundary layer. 

It is interesting to note that the demarcation wavelength of about 26 associ- 
ates the low wave-number family with the slowly rising low-frequency portion 
of the frequency power spectrum (figure 5) and the high wave-number family 
with the high-frequency falling part of the spectrum. 

From the spectral curves it can be estimated that the respective contributions 
to the mean-square pressure of the high and low wave-number families are roughly 
75 and 25 yo. 

For the high wave-number family, w[,/ U,( w )  similarity implies that the various 
wave-number components lose coherence in times which are proportional to 
the times required for them to be convected distances equal to their wavelengths. 
If we consider that a component has lost its identity when the correlation 
amplitude lBpn(tl, 0, T ! ! w ) /  has fallen to 0.05 then figure 16a indicates that this 
occurs while the component is convected a distance corresponding to 

wt, / l&(w) 2: 24.5 or t1 21 4h,. 

The comparable value found by Harrison (1958) was about 2 wavelengths, while 
a more recent measurement by Willmarth & Wooldridge (1962) gave 4 to 6 
wavelengths. Alternatively we could define an integral coherence length scale 

given by I0 

[A,(w)l,, = 1 I R,,(tl, 0, TI141 dtl. 
-02 

Using (14) the value of this scale is SOU,(w)/w or 3.2h1. The coherence length 
scale is not a length scale in the normal sense but really represents the time scale 
of cohei-ence of the components when viewed in a frame of reference moving at  
the convection velocity (that is 3.2h,/Uc(w)). 

For the lateral direction W & ~ / U ~ ( W )  similarity implies that the various longitu- 
dinal wave-number components are laterally coherent over distances propor- 
tional to their wavelengths. The behaviour of the broad-band convection velocity 
for C3 + 0 (figure 12), which increases more rapidly with increasing 6, than for 

t This velocity was incorrectly given in University of Southampton Report A.A.S.U. 243. 
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t3 = 0, but approaches the same final values at large El, is consistent with this. 
Again taking a correlation amplitude of 0.05 as the criterion, the coherence 
length is given by o[,/U,(w) = 4-7 or t3/hl N 0.75, that is, 1.5 wavelengths for 
6, positive and negative. This figure gives some support to the result found in 
the broad-band case that the lateral integral scale of the pressure field was 
greater than the longitudinal. We could also define an integral lateral coherence 
length scale by 

which from (15) has the value 0.45h1. 

7.4. Evolution of the pressure field 

The division of the pressure field into two wave-number families with different 
decay characteristics leads to two stages in the evolution of the field. In  the 
first stage both families make significant contributions to the correlation func- 
tions, but the development of the field is more strongly influenced by the high 
wave-number family associated with motion in the constant stress layer. The 
property of the high wave-number family that, at small separations, its com- 
ponents lose coherence more rapidly the higher their wave-number, which 
leads to w[,/U,(w) and wt,/U,(w) similarity, is dominant. At the same time 
the spectrum of correlated components is becoming progressively curtailed 
at  high wave-numbers as separation increases. This is evident in the 
variation with spatial separation of the broad-band convection velocity and 
longitudinal space-time correlations. At small separations the latter have 
sharp narrow peaks indicating a broad spectrum of correlated wave-numbers, 
but as separation increases the peaks rapidly disappear and the curves become 
broader and flatter (see figure lo) ,  indicating a progressive loss of high 
wave-number contribution. The broad-band convection velocity results already 
discussed show that initially there is a strong contribution from the innermost 
part of the fully turbulent region of the constant stress layer and possibly the 
transition region also, but as spatial spearation increases to a few displacement 
thicknesses the broad-band convection velocity rises rapidly towards the 
asymptotic value 0.825U0 characteristic of the large-scale structure of the field, 
indicating that the contribution to the pressure correlation from the fine-scale 
motion in this region close to the wall quickly becomes small, owing to the rapid 
dissipation and dispersion of pressure sources by the high shear occurring there. 
However, there are indications that motion not too far from the wall influences 
the pressure field up to quite large separations; the variation of broad-band 
convection velocity suggests that the influence of the high wave-number family 
persists for the time taken for it to be convected a distance of a t  least 1OS*, 
while the dependence of the moving-frame correlation R,,([,, 0 , ~ ~ )  on the length 
scale v/L: (figure 13) indicates that some influence persists over a convection 
distance of at  least 2OS* or about 2-48. 

As the high-frequency components lose coherence the correlation becomes in- 
creasingly dominated by the low wave-number family. In this second stage the 
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development of the field is due to loss of coherence of the components of this 
family with spectral similarity. This view is supported by the observations that at  
the larger separations the broad-band convection velocity U, is independent of 
separation (so that the correlated components arise from turbulence which has 
the same centre of gravity at all times in this stage); that the broad-band space- 
time correlation curves are roughly similar at large separations, increasing 
separation serving to reduce their magnitude without large changes in correla- 
tion scale; and that the narrow-band measurements show coherence of the low 
wave-number family to be independent of frequency. 

Since the narrow-band convection velocities are essentially the same for 
p = O", 30" and 60" the various components of the pressure field apparently do 
not undergo any rapid distortion in the lateral direction during convection, 
retaining the same convection velocity at  all locations across their width. This 
indicates that, as might be expected, dispersion of pressure sources occurs almost 
entirely through the action of the relative shearing motion of the mean flow 
at different distances from the wall. 
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